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We introduce two new computer models in which the influence of the finite potential 
mesh is, for most practical purposes, eliminated. The Quiet Particle-Mesh model 
(QPM) uses a Gaussian-shaped charge cloud and careful shaping of the potential 
solution in either real or transform space. The QPM model is measured to be 150 times 
less noisy than the conventional CIC model and is suitable for large collisionless plasma 
simulations with 106 or more particles. This is achieved at little or no cost in computing 
time. The hybrid Particle-Particle/Particle-Mesh model (PPPM), on the other hand, adds 
to the above mesh calculation contributions from nearby particles by direct summation. 
This model has a spatial resolution which is independent of the mesh spacing and may be 
a small fraction of a mesh cell. It is more time-consuming and is suitable for high- 
resolution sub-Debye length investigations with a smaller number of particles (-lOa). 
Applied to molecular dynamics, the PPPM model can simulate systems with approxi- 
mately 100 times the number of particles than conventional methods. 

1. INTRODUCTION 

The spatial resolution of conventional computer models of plasmas, such as the 
NGP [l] and CIC [2] models, is limited by the density of mesh points on which 
the fields are defined. Theoretical [3, 15, 161 and experimental [8, 171 work has 
shown that, in the case of collisionless plasmas, the finite sampling density of the 
fields causes increased collision times, nonconservation of energy, and mesh- 
induced growth of plasma waves. The desirable lengthening of collision times may 
be physically interpreted by ascribing a finite size to the representative particles, 
whereas the other two effects, which arise from mesh-induced force fluctuations 
(aliases in transform space), are totally unrealistic and unacceptable. We describe 
here a quiet particle-mesh model (QPM) in which the unwanted force fluctuations 
are almost completely suppressed, and a related hybrid particle-particle/particle- 
mesh (PPPM) model [5] in which the charge shape may be specified independently 
of the mesh spacing. On the one hand, the QPM version provides an improvement 
on the CIC method for use in collisionless simulations with large (~10~) numbers 
of particles, while, on the other hand, the PPPM version is capable of studying the 
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microscopic (sub-Debye length) plasma properties with a smaller (~10~) number 
of particles. Both methods are applicable in one, two, or three dimensions. 

In the PPPM model, the force between two particles is composed of a slowly 
varying long-range mesh force, E, which is present for all separations, r, of the 
particles, together with a rapidly varying short-range particle-particle (PP) com- 
ponent, F, which is present only if r < a (the cutoff radius). We shall see that the 
total force, E + F, can be of arbitrary shape; however, we will restrict the sub- 
sequent description to the special case of the coulomb interaction in two dimensions 
which is appropriate in the plasma application. The QPM version is simply the 
PPPM model in the absence of the short-range-part F. 

2. THE QPM MODEL 

1. Gaussian-Shaped Cloud 

The mesh force is obtained in the usual way [l, 21 by the assignment of charge 
to a fixed potential mesh, the solution of Poisson’s equation, and the differencing 
of the potential to obtain the field at each mesh point. The coordinates of each 
particle are taken to be the center of a truncated Gaussian-Shaped Cloud (GSC) 
with charge density 

N(xJ cc exp (-$1xP/2o2) I xd I < K 

= 0 I xi I > H, 

1 <i<d, u = 0.455, 

where H is the distance between mesh points, xi is the coordinate in the ith 
dimension relative to the center of the particle, and d is the dimensionality. 

The GSC spreads the charge of a particle over the surrounding nine cells (in 
two dimensions) in proportion to the charge of the cloud lying in each cell. 
Similarly, the total force on a particle is taken as the weighted sum of the forces in 
the surrounding nine cells using the same proportional weights, just as in the CIC 
method. 

The force obtained with GSC interpolation is continuous in the first and all 
higher derivatives to within -10 % of either the first or second derivative of the 
field. It is therefore smoother and quieter than the CIC model which has large 
discontinuities in the first derivative, approximately equal in magnitude to the 
second derivative of the field. By comparison, quadratic spline interpolation, as 
discussed by Buneman [4], has exact continuity in the first derivative, large 
discontinuities of the second derivative, and exact continuity of all higher deriv- 
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atives [lo]. Here, we have adopted the GSC which spreads the total amount of 
discontinuity over all higher derivatives rather than concentrating the effect in 
one derivative (a comparative analysis of the effect of different charge-sharing 
algorithms on the mesh force E is given by Eastwood [12]). 

2. Potential Correction 

The potential, 4, is obtained from the charge distribution, p, by using the Fast 
Fourier Transform (FFT) [6] and the relation 

where 
&t = G&t 7 

q = -47rpH2 in esu. 

(2) 

The hat denotes the finite double Fourier transform of the mesh values, and G is 
a Green’s or influence function for a unit point source, which may be of arbitrary 
shape [7]. 

We split G(= & + &) into two parts: 

e;,, = (A + 4)/(4B + 8A - 20) k, C = 1, 2 ,..., m/2, 
(3) 

Gsl = 0, 

where 

and 
A = cos(2nk/m) + cos(2n&) 

B = cos(2?rk/m) cos(2nJ’/m), 

which is derived from the 9-point difference approximation to Poisson’s equation, 
V%#J = -hp, on an (m x m) mesh and solves that equation well except at short 
range, and a correction term. 

G.G = c cs,t cos(2rrkslm) cos(2dtlm) (4) 
s,t 

which for small values of s and t alters the Greens function Gsst only at short 
range (i.e., for r < a). 

The mesh assigned part of the force between two particles depends both on 
their separation and on the angle, 8, between the separation vector and the axis 
of the mesh. For the NGP and CIC methods, we have found the maximum 
difference between the mesh force measured along 19 = 0” and 8 = 45” to be -50 % 
of the force at one mesh distance. This angular anisotropy is immediately reduced 
to 5 % by the use of the GSC and to 0.5 % by a careful choice of eight independent 
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constants c,,~ . A least-squares procedure is used with the requirement that E 
be any function of r for r < a and the coulomb field for r > a. The required 
total force is then obtained by suitably choosing the short-range force, F. The 
result is valid for any position of the particles within a mesh cell. A set of 
optimum constants has been found for the GSC on a 256 x 256 potential mesh 
with doubly periodic boundary conditions using the g-point difference equations (3). 
These are: 

coo = 0.2804, co1 = cl, = 0.2698, c,, = 0.1775, 

co2 = czo = 0.0213, c12 = cgl = 0.0878, cz2 = -0.0443, (5) 

co3 = c,, = 0.0067, Cl, = C31 = -0.0351. 

The constants are independent of the number of mesh points, m, and the mesh 
spacing IX The use of the constant coo by itself tampers with the Fourier transform 
in the way discussed by Buneman [4, p. 2531. 

The interpretation of the influence function G,,t is simply related to the physical 
realization of Green’s function in continuum electrostatics. The convolution 
integral arising from the application of Green’s method to Poisson’s equation 

4(x) = lx G(x - x’) p(x’) dx’ (6) 

becomes the convolution sum on the mesh 

ht = c Ga--sl,t--t#ps,.t# , 
s’.V 

(7) 

the finite transform of which is the harmonic equation (2). Comparison of Eqs. (6) 
and (7) immediately reveals that G,,t gives the potential on mesh point (3, t) due 
to a unit charge at the origin. Thus, since the global shaping of &, by Gi,, corre- 
sponds to independently changing values of Gsat in each octant by amounts 
C s.t 3 G;,t may be seen as the correction to offset the “squareness” produced by 
charge sharing and differencing errors on the rectangular mesh [9, lo]. 

The use of the FFT to solve for the potential, and smoothing by shaping the 
transform, are not themselves new. The efficacy of these ideas have been recognized 
and exploited previously by, for instance, Hackney [7,8] and Orens et al. [14] in 
the simulation of plasmas, and by Hohl and Hackney [l I] in galaxy simulations. 
However, to our knowledge, methodically shaping the transform by varying 
individual values of G,,t (subject to the eightfold symmetry requirements of the 
mesh) is without precedent. The great advantage of our novel method is that with 
a finite difference approximation for the electric field, changes in the values c,,~ 

5Wr4/2- 4 
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result in spatially localized changes in the force. Accordingly, by limiting values 
of s and t to approximately the circle such that s2 + t2 < 10, we are able to find 
the best values of coefficients c,,~ to smooth the short-range force variations without 
affecting the mesh force at long range. Assuming that we adopt the physically 
meaningful interparticle force profile as a measure of the width of the charged 
clouds [g-lo], then, for the QPM version, the optimal values cited in Eq. (5) yield 
almost mesh independent cylindrically symmetric rods of width 3.2H (cf. -H for 
NGP and CIC). We have used here the distance to the peak in the force law F(r) 
as the value of width. This provides an easy measure, agreeing well with collision 
measurements. The increased width and smoothness have the desirable effect of 
lengthening both the collision time and heating time [8, lo]. Indeed, it is evident 
that the stochastic heating rate [8] and coherent particle-mesh interactions [3] 
should be considerably reduced, for our method provides an interparticle force 
whose dependence on the mesh is two orders of magnitude weaker than that of 
the standard CIC algorithm. This is what we mean by a Quiet Model. 

The quality of a plasma simulation may be measured in terms of the collision 
time (the time on average for a plasma particle in a thermal plasma to deflect 
through 90”) and the heating time (the time for kinetic energy of the electrons to 
increase by kT due to stochastic effects). We have extended the measurements of 
these quantities previously made by Hackney [8] on the CIC and NGP models to 
the new QPM model and some other variants. 

3. Noise Measurements 

The collision time, T,,~~ , is related empirically to the Debye length, h, , plasma 
density, n, and particle width, IV, by the relation 

T,,~~/T,, = 0.98n(hD2 + Wz). (8) 

Further, the heating time, T,, , is related to the collision time by the equation 

provided that a sensible choice is made of the time step, DT optimum, from 

Kj, (previously called K4) will be referred to as the heating constant. 
These relations show that for a quiet, collisionless simulation we want a large 

value of W (but not so large as to lose too much spatial resolution) and a large 
value of KH . The measured values for various models in descending order of 
merit are as follows: 
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(1) GSC 9, YES = QPM w = 3.0, KH = 3000, f= 150 
(2) CIC, 9, YES = QCIC W = 2.8, K,z, = 600, f=26 
(3) CIC, 5, YES W = 2.8, KH = 200, f=9 
(4) GX 9, NO = GSC W = 1.8, KH = 150, f=3 
(5) cc 9, NO = CIC W = 1.0, KH = 100, f=l 
(6) CC 5, NO = CIC W = 1.0, KH = 100, f=l 
(7) CK 5, NO=CIC[8] W=l.O, KH=40, f = l/2.5 
(8) NGP, 5, NO=NGP[8] W=l.O, KH=5, f = l/20 

In the above table, the first three letters designate the type of charge sharing used; 
the number 9 or 5, the number of finite difference points used in the approximation 
to Poisson’s equation; and YES or NO refers to whether or not the potential 
correction term e” and coefficients c,,$ are included. The merit figure, f, is propor- 
tional to the heating time in units of plasma period for a typical problem with 
(H/A,) = 1. It includes the contribution of both W and KH to the quietness in a 
particular application. 

Model (1) is the QPM model as described in this paper which is shown, as 
expected, to be 150 times quieter than the tranditional CIC models (5) or (6). The 
next-best model number (2) is obtained by adding the correction coefficients c,,t 
to the traditional CIC model (5) with the g-point Poisson approximation. These 
coefficients given in Eq. (5), although chosen to compensate for a GSC charge- 
sharing scheme, improve the CIC model by a factor 26. We call this the quiet 
CIC model (QCIC). The same coefficients are somewhat less successful in 
quietening a (CIC) model using the 5-point finite difference approximation, 
presumably because the coefficients were chosen for a g-point approximation, 
but a factor of almost 10 improvement even in this case is remarkable. Model (4) 
is the model using GSC charge sharing and no potential correction. The unex- 
pectedly small improvement over CIC of a factor 3, which is mostly due to increased 
particle width, may not justify the use of this model because of the extra computing 
time required by GSC charge sharing. The difference between the measurements 
of the same CIC model listed under models (6) and (7) probably indicates a system- 
atic difference between the earlier measurements [8] and the current ones. The 
reason may be the greater care now taken to establish thermal equilibrium before 
the heating rate measurement is taken. 

4. Real-Space Smoothing 

We emphasize that the QPM model presented is only one of a class of QPM 
models. The introduction of the short-range correction &’ is a general method that 
can be used to reduce the mesh dependence of the force obtained from any charge 
sharing and double FFT Poisson-solving algorithm. The ensuing improvements are 
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achieved at no extra cost in computer time, since e” is absorbed into the precal- 
culated multiplying factor e. In particular, it can be used, with appropriately 
chosen values of c,,~ to improve the commonly used CIC scheme, as the above 
measurements confirm. 

In the event that a Fourier-transform potential solver is not being used, the 
potential correction can be applied in real-space entirely externally to the potential 
solver, again at little or no cost in computing time. In fact, an improvement of 
computer speed may result if a faster method than FFT is used to solve Poisson’s 
equation. The process may be regarded as a smoothing operation applied either 
to the charge distribution prior to the potential solution or to the potential after 
the solution of Poisson’s equation. The Poisson-solving routine, whatever its 
nature, is used as a “black box”. 

The required potential is given by 

4 = KV,2)-1) + Gl q, (11) 

where V,* is the matrix operator describing the finite-difference equations and 
G is the matrix containing the coefficients c,,~ which describe the potential 
correction. Both Vh2 and G represent localized operations and are therefore sparse 
matrices; + and q are vectors containing the ordered mesh values of the potential 
and charge distribution. 

Equation (11) may be computed in two stages: 

q* = [l + V,2Glq, (12) 
followed by 

4 = (vh2)-’ q*r (13) 

where (12) represents the smoothing of the given charge distribution to obtain q* 
and (13) is the application of any existing Poisson-solving routine to the smoothed 
function. Equally well, the smoothing may be performed after solving for the 
potential by computing 

+* = (V,2)-’ q (14) 
followed by 

4 = [1 + GV,2] +*. (15) 

It is easy to see that sines and cosines are the eigenfunctions of both G and V,2; 
consequently, these matrices commute and the two smoothing operators in (12) 
and (15) are in fact the same. The number of computer operations required to 
compute + from q* or +* from q is 63m2 for an (m x m) potential mesh, where 
we have made use of any symmetries in the coefficients c,,~ to reduce the number of 
multiplications. This extra computing may be compensated for by using, for 
example, the FACR algorithm [7] for the solution of Poisson’s equation with an 
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operation count of 2.5m2 (log, m + 2.4) in place of the Fourier transform DFA [7] 
method with an operation count of 10m2 (log, m - 2.8). A comparison of the 
total operations required shows that real-space and k-space potential correction 
take closely the same time for m = 256 and that real-space smoothing wins for 
larger values of m. However, there may be other reasons for favoring the calculation 
of k-space. 

3. Trrn PPPM MODEL 

The PPPM version of the model is formed by adding the particle-particle force F, 
which is found by directly summing contributions from the neighbors of each 
particle (i.e., those for which the separation r < a). The contribution added is 
the force necessary to bring the mesh force E up to the required value. It is found 
by table look-up and can clearly be of arbitrary shape. The effective particle 
size, as determined by the total force of interaction E + F, can therefore be adjusted 
to any required value and becomes independent of the mesh spacing, H. Thus the 
particle size is no longer determined by the region of the mesh over which the charge 
of the particle is distributed, as is the case with the CIC or QPM models. In 
particular, the effective width of the QPM particle can be reduced from a value of 
~3.2H to an arbitrary small fraction of a cell. 

Buneman [4] has given an interpolation scheme, using splines, which reduces the 
uncertainty in position of the center of a particle cloud to a fraction of a cell; 
however, the distance at which two particles may be recognized as distinct (the 
resolution in the astronomical sense) is still approximately the mesh size. In the 
PPPM model, this “astronomical” resolution may be reduced to a fraction of a 
cell. This is what we mean by High Resolution. 

1. Linked-List Technique 

We find the neighbors by a linked-list technique. A mesh of chain cells is intro- 
duced over the region of the calculation and all particles in each cell are linked 
together in a chain. If the side of a chain cell is of length a, then all neighbors of 
a particle are to be found either in its own chain cell or in one of the eight cells 
touching it. To form the chains, one needs an array containing the particle number 
of the first particle in the chain for each cell-the “head of chain” array- and an 
additional coordinate for each particle. This link coordinate is the particle number 
of the next particle of the chain, with the convention that a zero value for the 
link means the end of the chain. 

After clearing the “head of chain” array, the chain can be built-up by scanning 
the particle coordinates in sequence and performing the steps (a)-(c), given below. 
Let the particle being examined be number n and the total number of particles N; 
then, 
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(a) find the chain cell from the particle coordinates, say cell (i, j); 
(b) transfer the present contents of the “head of chain” array (i, j) to the link 

coordinate of particle n; 
(c) place n in the “head of chain” array (i, j). 

The formation of the chains may conveniently be done while the charge distri- 
bution is being built-up and takes only 2N divisions and a storage typically of 
l$N. The technique is described in detail because some frequently used methods 
for tracing neighbors, e.g., in molecular dynamics, take wN2 operations and a great 
deal more storage. Such N2 methods cannot be used with large assemblies. 

The linked-list technique may be extended to simulations where only parts of 
the field array and a subset of the particle coordinates may be held simultaneously 
in random access memory. The extension involves splitting configuration space 
into slabs, each slab having its own (variable length) linked-list and head-of-chain 
table; particles passing from slab a to slab b are transferred from slab u to a transfer 
table, and thence to slab b when that region is being processed. Naturally, the 
increased bookwork leads to greater overheads, but the operation count remains 
proportional to N. 

4. COMPUTER TIMINGS 

A PPPM model has been used successfully to simulate a two-dimensional 
assembly of 10,000 ions and had a time-step cycle of 8.7 set on the IBM 360/195. 
The potential mesh was (256 x 256), the chain mesh (64 x 64), a = 4H, and the 
average number of neighbors was 12. Charge assignement and the formation of 
links took 0.7 set, the potential solution 2 set and the particle pushing (i.e., 
differencing of the potential and movement of particles) 6 sec. The program ran 
in a region size of 8OOK Bytes. 

The above model was also run as a QPM code by eliminating the particle- 
particle contribution. The cycle time was then 4.3 set of which the particle pushing 
took 1 .l sec. This time corresponds to 110 psec per particle which will seem slow 
compared to some existing highly optimized CIC codes (for example, Orens, 
Boris, and Haber report -12 psed per particle for an NRL CIC code using word 
packing and integer arithmetic [14]). However, the times quoted in this paper 
refer to an unoptimized development program written in Fortran and compiled 
under the Fortran H opt = 2. There is no reason, based on the number of computer 
operations, why the particle pushing of the QPM code using the g-point GSC cloud 
should be more than twice as slow as the 4-point CIC algorithm. This is confirmed 

1 Scaled from a figure of -20 ccc on the IBM360/91 using the comparative machine speeds 
reported by Hackney [13]. 
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by the following comparative measurements for the particle-pushing phase of 
different models which were all made with Fortran programs written with the same 
level of care and run on the IBM 360/195 under Fortran H opt = 2 compiler, on 
the same day: 

NGP l-point scheme; 23 psec per particle 
CIC 4-point scheme; 44 psec per particle 

QPM g-point scheme; 104 psec per particle 
PPPM (g-point + PP); 550 psec per particle. 

5. CONCLUSIONS 

The quiet high-resolution model conspicuously exhibits qualities hitherto 
unattained in particle-mesh models. In the absence of the direct particle-particle 
force contribution (QPM version), the short-range correction e” enables the 
mesh-induced force fluctuations to be supressed, while at the same time retaining 
the maximum physically meaningful information; we stress again that this 
correction can be used to improve any existing codes (e.g., CIC) which use a 
FFT method for determining the potential, without any increase in cycle time. 
The addition of the short-range force to form the PPPM model provides new 
flexibility to the established particle-mesh methods, bringing the study of micro- 
scopic properties of large ensembles of ionized particles within the compass of 
practicable simulations. 
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